Radiation Oncology Update: Tom Baker Cancer Centre

2023 Provincial Cutaneous Meeting

Dr. Jordan Stosky

February 10, 2023

Disclosures

• None

Objectives

- Discuss increasing Cutaneous Rad Onc Utilization at TBCC
- Review recent advances in melanoma brain metastases
- Review recent Merkel Cell Data and RT practices Australia
- New Calgary Cancer Centre Update Orthovoltage Unit

Cutaneous Radiation Oncology Consults - TBCC

2018-2022 New Patient Consultations

Patients Treated on Orthovoltage Unit

Treatments Delivered on Orthovoltage Unit

Orthovoltage Example

Frail 90s F with locally advanced BCC

6 Weeks After Treatment

Complex Radiotherapy

- Would use linear accelerator, aquaplast immobilization, daily on-board imaging
- Suitable for complex, deeper, invasive lesions, node positive disease

Advances in Brain Metastases - Melanoma

- SRS or FSRT still preferred if solitary or 'several' brain metastasis
 - Consider whole brain radiotherapy if >=5-10 lesions
- If not suitable for SRS, then whole brain radiotherapy is possibly indicated
- In recent years, more data supporting practice of more sophisticated treatments, namely: Hippocampal Avoidance – Whole Brain Radiotherapy
 Hippocampal Avoidance During Whole-Brain

Original PropositionHippocampal Avoidance During Whole-BrainRadiotherapy Plus Memantine for Patients With
Brain Metastases: Phase III Trial NRG
Oncology CC001

Paul D. Brown, MD¹; Vinai Gondi, MD²; Stephanie Pugh, PhD³; Wolfgang A. Tome, PhD⁴; Jeffrey S. Wefel, PhD⁵; Terri S. Armstrong, PhD⁶; Joseph A. Bovi, MD⁷; Cliff Robinson, MD⁸; Andre Konski, MD, MBA⁹; Deepak Khuntia, MD¹⁰; David Grosshans, MD, PhD⁵; Tammie L. S. Benzinger, MD, PhD⁸; Deborah Bruner, PhD¹¹; Mark R. Gilbert, MD⁶; David Roberge, MD¹²; Vijayananda Kundapur, MD¹³; Kiran Devisetty, MD¹⁴; Sunjay Shah, MD¹⁵; Kenneth Usuki, MD¹⁶; Bethany Marie Anderson, MD¹⁷; Baldassarre Stea, MD, PhD¹⁸; Harold Yoon, MD¹⁹; Jing Li, MD⁵; Nadia N. Laack, MD¹; Tim J. Kruser, MD²⁰; Steven J. Chmura, MD, PhD²¹; Wenyin Shi, MD²²; Snehal Deshmukh, MS³; Minesh P. Mehta, MD²³; and Lisa A. Kachnic, MD²⁴ for NRG Oncology

CNS Treatments – Melanoma Brain Mets

- Dr Faruqi also in CNS group, offers SRS, HA-WBRT, WBRT
- Dr Stosky offers HA-WBRT, WBRT, refers to CNS for SRS

Wang et al. BMC Cancer (2023) 23:30 https://doi.org/10.1186/s12885-022-10349-1

RESEARCH

Merkel cell carcinoma: a forty-year experience at the Peter MacCallum Cancer Centre

Annie J. Wang¹, Brendan McCann^{1*}⁽⁰⁾, William C. L. Soon¹, Paolo B. De leso², Mathias Bressel³, Andrew Hui⁴, Margaret Chua¹ and David L. Kok^{1,5*}

BMC Cancer

Open Access

MCC – Peter MacCallum

- Reviewed 533 patient records from 1980 2018
- Median FU 5.3 years
- Prior skin cancers in 77%
- 14% immunosuppressed

Patient Characteristics

Table 1 Clinicopathological characteristics

Characteristic, N = 533	n (%), range	
Age at diagnosis, yrs	(yrs)	
Mean (sd)	76.1 (11.9)	
Median [range]	78 [19-98]	
Interquartile range	69-85	
Sex		
Male	315 (59)	
Female	218 (41)	
Immunosuppressed		
Yes	77 (14)	
No	456 (86)	
Other Skin Malignancy		
Yes	272 (77)	
No	81 (23)	
Missing	180	
Sun damaged skin		
Yes	112 (93)	
No	9 (7)	
Missing	412	
Viral Status		
Positive	38 (39)	
Negative	60 (61)	
Missing	435	
Location of Primary		
Head & Neck	267 (50)	
Upper Limbs	77 (14)	
Lower Limbs	95 (18)	
Trunk	24 (5)	
Unknown	70 (13)	

Unknown primary site

Other	27 (5)
RT/CRT	79 (15)
Surgery + RT	393 (74)
Surgical excision alone	34 (6)
Treatment received	
PET	300 (58)
СТ	286 (60)
Chest X-ray	47 (10)
Staging modality	
Missing	100
Positive	145 (33)
Negative	288 (67)
Margins	
Missing	9
IV	12 (2)
III (A or B)	215 (21)
II	72 (14)
1	225 (43)
Stage (AJCC 8th edition)	
Median Tumour diameter, mm, (IQR)	15 (9–23)
No	464 (87)
Yes	69 (13)

Staging

- 78% PET staging
- Only 66/533 received SLNB
 - Only performed on T1N0
 - Uncertainties of SLNB post-reconstruction (many done at external centres)
 - Not performed if clear PET

Surgery

- 85% received excision
- Median pathological margin was 2.0mm [0.0-40.0 mm]
- Positive margins in 33% of patients
- 154 patients undersent nodal surgery (separate from SLNB)
 - 56/154 dissections
 - 28/154 node excisions
- 34/533 (6%) of all patients treated with surgery alone
 - 76% stage I or stage II

Radiotherapy

- 66/533 (12%) treated with definitive or chemoradiotherapy (carboplatin + etoposide)
- 383/454 patients (84%) received post-op RT to primary +- nodal regions
- All T2N0 received elective nodal radiation therapy
- Median post op (microscopic) dose 50 Gy / 25 fr
 - Unchanged since 1990s
- Median definitive dose 54 Gy / 27 f (with chemo)
 - Increased from 50 Gy in 2009
 - Increased again to 60 Gy in 2015

Immunotherapy and recurrence

• 26/533 (5%) of patients received immunotherapy for recurrence

Outcomes by Modality

Fig. 2 Disease Free Survival and Overall Survival by initial treatment modality

Outcomes by Stage

Fig. 3 Disease Free Survival and Overall Survival by stage

Considerations

- More definitive RT/ChemoRT than what we would typically use locally
- Less pursuit of wide margins on local excision if planning for adjuvant RT
- More elective nodal irradiation in T2N0
- Non randomized

MCC Hypofractionation

- MCC is a rapidly growing tumor, but most described and standard of care radiation doses are conventional fractionation
- MCC also most commonly found in elderly patients, those most unlikely to be fit for protracted courses of treatment
- We use hypofrationation commonly in other skin and non skin cancers
- Very little data on hypofractionation in this tumor site

MCC Hypofractio nation

- Brigham & Women's Hopsital observational data from 2005-2021 for patients with nonmetastastic MCC treated with curative intent
- Patients unfit for conventional fractionation treated with hypofractionated radiotherapy

Original Article

Characterization of clinical outcomes after shorter course hypofractionated and standard-course radiotherapy for stage I-III curatively-treated Merkel cell carcinoma

Check for updates

Kevin X. Liu^a, Michael G. Milligan^a, Jonathan D. Schoenfeld^{a,b}, Roy B. Tishler^{a,b}, Andrea K. Ng^a, Phillip M. Devlin^a, Elliott Fite^a, Guilherme Rabinowits^c, Glenn J. Hanna^{b,d}, Ann W. Silk^{b,d}, Charles H. Yoon^{b,e}, Manisha Thakuria^{b,f}, Danielle N. Margalit^{a,b,*}

^a Department of Radiation Oncology, Brigham & Women's Hospital/Dana-Farber Cancer Institute; ^b Merkel Cell Carcinoma Center of Excellence, Dana-Farber/Brigham & Women's Cancer Center, Boston; ^c Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, United States; ^d Department of Medical Oncology, Dana-Farber Cancer Institute; ^e Division of Surgical Oncology, Department of Surgery, Dana-Farber/Brigham and Women's Cancer Center; and ^fDepartment of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States

	Entire Cohort n (%)	Standard Fractionation n (%)	Short course/Hypofractionation n (%)	<i>p</i> -value
Definitive surgery before	e radiation			
No	84 (34.6%)	62 (32.1%)	22 (44.0%)	0.134
Yes	159 (65.4%)	131 (67.9%)	28 (56.0%)	
Nodal sampling before r	radiation [^]			
No	68 (28.0%)	48 (24.9%)	20 (40.0%)	0.051
Yes	175 (72.0%)	145 (75.1%)	30 (60.0%)	
Definitive radiation				
No	155 (63.8%)	129 (66.8%)	26 (52.0%)	0.069
Yes	88 (36.2%)	64 (33.2%)	24 (48.0%)	
Positive margins before	radiation			
No	139 (64.7%)	120 (70.6%)	19 (42.2%)	0.001*
Yes	76 (35.3%)	50 (29.4%)	26 (57.8%)	
Days from diagnosis to	radiation [†]			
<62 days	127 (52.3%)	97 (50.3%)	30 (60.0%)	0.267
>62 days	116 (47.7%)	96 (49.7%)	20 (40.0%)	
Equivalent dose in 2 Gv	fractions (EOD2)			
>50 Gv	204 (83.5%)	183 (94.8%)	21 (42.0%)	< 0.001*
<50 Gy	39 (16.5%)	10 (5.2%)	29 (58.0%)	
Radiation modality for r	primary site treatment			
Electrons	99 (47.6%)	78 (47,3%)	21 (48.8%)	< 0.001*
Photons	100 (48.1%)	86 (52.1%)	14 (32.6%)	
Brachytherapy	9 (4.3%)	1 (0.6%)	8 (18.6%)	
Radiation modality for r	nodal treatment			
Electrons	2 (1.2%)	1 (0.7%)	1 (4.8%)	0.239
Photons	163 (98.8%)	143 (99.3%)	20 (95.2%)	
Systemic therapy before	radiation			
No	231 (95.1%)	182 (94.3%)	49 (98.0%)	0.468
Yes	12 (4.9%)	11 (5.7%)	1 (2.0%)	
Concurrent systemic the	erapy with radiation			
No	207 (85.2%)	159 (82.4%)	48 (96.0%)	0.014*
Yes	36 (14.8%)	34 (17.6%)	2 (4.0%)	
Systemic therapy after r	radiation			
No	216 (88.9%)	168 (87.0%)	48 (96.0%)	0.081
Yes	27 (11.1%)	25 (13.0%)	2 (4.0%)	
Progression before radia	ation			
No	226 (93.0%)	182 (94.3%)	44 (88.0%)	0.127
Yes	17 (7.0%)	11 (5.7%)	6 (12.0%)	

Treatment characteristics for curative-intent postoperative or definitive radiation therapy for Merkel cell carcinoma.

Table 2

* p < 0.05. ^ Includes sentinel lymph node biopsy and lymph node dissection.

[†] Dichotomized at the median.

Any Recurrence

In-field Recurrence

Considerations

- Reasonable in-field control with hypofractionation
- Non-randomized, unbalanced groups don't allow for even comparisons
- Worse OS in hypofractionation group probably represents patients selection of worse patient and tumor factors for hypofractionation

CCC Pictures

• Reception CT SIM

New Orthovoltage Unit

Orthovoltage

- Currently, have commissioned 100kV, 150kV, 200kV
- New CCC will also add 300kV to xstrahl commissioning
 - Adds a bit more dose to depth for thicker lesions
 - Practical for palliation not suitable for linac

Questions and Discussion

Thank you

jordan.stosky@ahs.ca